
23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 1/10

Understanding ROS Transforms
Defining how objects in a robot's world relate to each other

Esther Weon · José L. Millán · 5 min read

Published December 21, 2022

Robots are compound systems navigating complex worlds. To understand how

they interact with other players in their environments, we can use

mathematical operations called transformations. Transformations (or more

simply, "transforms") express an object's position and orientation in relation

to another.

https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 2/10

In this tutorial, we'll cover how transforms describe the worlds that our robots

navigate – not only by positioning their components in relation to each other,

but also in relation to the objects they encounter.

Situating objects with frames

In robotics, a frame refers to the coordinate system describing an object's

position and orientation, typically along x, y, and z axes. ROS requires each

frame to have its own unique frame_id , and a typical scene consists of

multiple frames for each robot component (i.e. limb, sensor), detected object,

and player in the robot's world.

A scene always has one base frame – usually named world or map – that is an

unmoving constant. All other frames in the scene – including the robot’s own

frame, which ROS typically calls base_link – are children to this base frame,

and are positioned relative to this parent in some way.

The robot’s base_link frame usually starts at its base and branches off into

child frames for limbs and sensors:

https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 3/10

Visualizing the UR5 collaborative robot arm in Foxglove Studio's 3D panel.

Each frame's x, y, and z axes are denoted by red, blue, and green arrows.

Each sensor’s frames can also branch off into further child frames for the

objects they detect. In this way, all objects in a given scene are somehow

defined in relation to the base frame and its child frames.

Connecting frames with transforms

Transforms define the translations and rotations needed to get from a

source frame to a target frame – whether it's parent-to-child, child-to-parent,

or across multiple "generations" of frames. A complete set of a scene's

transforms, from the base frame to all its related children, constitutes a

transform tree.

With a transform tree, you can quickly find the position and orientation of any

given frame in the scene, no matter how many levels removed you are from the

base. Transforms can be either static or mobile – static transforms (e.g.

https://github.com/gavanderhoorn/ros_industrial_training/blob/master/training/ref/2.8/lesson_urdf/urdf/ur5.urdf
https://foxglove.dev/studio
https://foxglove.dev/docs/studio/panels/3d
https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 4/10

between base_link and a sensor_link frame) remain constant, while mobile

transforms (e.g. between base_link and either a robotic arm mounted to the

base or a separate detected object) can change as the world does.

In ROS, transform messages are broadcast on two topics – /tf_static (for

static transforms) and /tf (for mobile transforms). This separation improves

bandwidth and reduces the number of transforms being published. ROS also

provides the tf2 library to help us calculate transformations between frames.

In the real world

Let's imagine a rover with a camera and robotic arm, navigating a flat maze:

We can see that the rover's base_link frame has static transforms to two

child frames – a sensor_link frame representing the unmoving camera

mounted to the front, and an arm_base_link frame representing the unmoving

arm base mounted to the top.

http://docs.ros.org/en/noetic/api/geometry_msgs/html/msg/TransformStamped.html
http://wiki.ros.org/tf2
https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 5/10

We also see that the arm_base_link frame has a mobile transform to its own

child frame – an arm_end_link frame representing the moving arm.

Building the transform tree

While ROS's tf2 library provides an easy way for us to calculate transforms,

let's take a peek at what this library is actually doing under the hood.

Each child frame has a transform that represents its position vector and

rotation in relation to its parent frame:

Parent: base_link

sensor_link – (2,1) position, -45° (π/4) rotation

arm_base_link – (1,-1) position, 30º (π/6) rotation

Parent: arm_base_link

arm_end_link – (1,1) position, no rotation

http://wiki.ros.org/tf2
https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 6/10

Given all this information, we can now use transforms to deduce

arm_end_link 's position in the base_link frame!

Calculating an object's position using transforms

To start traversing our transform tree (from base_link to arm_base_link to

arm_end_link), we need two pieces of information:

T - 2D transform matrix between base_link and arm_base_link

(translation of dx over x and dy over y , rotation over z)

p – Position vector for arm_end_link in the arm_base_link frame

Let's set the following values in T matrix:

Φ = π/6 – Rotation of arm_base_link in base_link

dx = 1 – Position (x) of arm_base_link in base_link

dy = -1 – Position (y) of arm_base_link in base_link

And the following values in the p matrix:

x = 1 – Position (x) of arm_end_link in arm_base_link

y = 1 – Position (y) of arm_end_link in arm_base_link

Finally, let's multiple these matrices together to get arm_end_link 's position in

the base_link frame:

https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 7/10

With our operation, we find that arm_end_link is in position (1.366, 0,366)

of the base_link frame!

Since arm_end_link is a mobile frame, it's important to note that this result is

only valid at the robotic arm's current position and angle. As the transform

between arm_base_link and arm_end_link inevitably changes, so will

arm_end_link 's position in space.

Learn more

Actual robots in the real world are often much more complex than our single-

sensor example, and must navigate much trickier terrain than a flat maze.

Calculating an object's position in its environment will often require multiplying

more than two matrices to travel from a source frame to a target frame.

Fortunately for us, ROS provides the tf2 library to do the necessary

transformation matrix math for us, so we can avoid doing these manual

calculations ourselves!

Stay tuned for our next tutorial on how to use these libraries to publish and

view transforms in Foxglove Studio. As always, feel free to ask questions,

share feedback, and request a topic for the next blog post in our Slack

community!

Share on Twitter Share on LinkedIn

http://wiki.ros.org/tf2
https://foxglove.dev/studio
https://foxglove.dev/slack
https://twitter.com/intent/tweet?text=Understanding%20ROS%20Transforms%3A%20https%3A%2F%2Ffoxglove.dev%2Fblog%2Funderstanding-ros-transforms%20%40foxglovedev
http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Ffoxglove.dev%2Fblog%2Funderstanding-ros-transforms
https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 8/10

Read more:

tutorial studio data platform MCAP

Announcing FlatBuffers Support in Foxglove

Analyze your FlatBuffers data with Foxglove Studio and Data

Platform.

Sam Nosenzo

December 12, 2022 · 6 min read

article studio MCAP

https://foxglove.dev/blog/announcing-flatbuffers-support-in-foxglove
https://foxglove.dev/blog/announcing-flatbuffers-support-in-foxglove
https://foxglove.dev/blog/implementing-a-macos-search-plugin-for-robotics-data
https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 9/10

Implementing a macOS Search Plug-In for
Robotics Data

How we built a Spotlight Importer for MCAP files using Swift.

Jacob Bandes-Storch

December 7, 2022 · 18 min read

All blog posts

Get blog posts sent directly to your inbox.

Email

Subscribe

Ready to get started?
Download today on Linux, Windows, or macOS.

Try it out

Download app

PRODUCTS

Foxglove Studio

Foxglove Data Platform

GET IN TOUCH

Join our community

Schedule a demo

COMPANY

About

Blog

https://foxglove.dev/blog/implementing-a-macos-search-plugin-for-robotics-data
https://foxglove.dev/blog
https://studio.foxglove.dev/
https://foxglove.dev/download
https://foxglove.dev/studio
https://foxglove.dev/data-platform
https://foxglove.dev/community
https://foxglove.dev/demo
https://foxglove.dev/about
https://foxglove.dev/blog
https://foxglove.dev/

23/12/2022, 15:19 Understanding ROS Transforms - Foxglove

https://foxglove.dev/blog/understanding-ros-transforms 10/10

Docs

Download

MCAP file format

Open source software

ROS visualization

Rosbridge

Tutorials

URDF viewer

Contact us

GitHub

Slack

Twitter

Careers

Media

Security

Privacy Policy

Terms of Service

SUBSCRIBE TO OUR NEWSLETTER

Catch our latest news and features, sent directly to your inbox.

Email

Subscribe

Made with 💜 by Foxglove

https://foxglove.dev/docs/studio
https://foxglove.dev/download
https://mcap.dev/
https://foxglove.dev/docs/studio/open-source-software
https://foxglove.dev/ros
https://foxglove.dev/rosbridge
https://foxglove.dev/tutorials
https://foxglove.dev/urdf
https://foxglove.dev/contact
https://github.com/foxglove
https://foxglove.dev/slack
https://twitter.com/foxglovedev
https://foxglove.dev/careers
https://foxglove.dev/media
https://foxglove.dev/security
https://foxglove.dev/legal/privacy
https://foxglove.dev/legal/terms
https://twitter.com/foxglovedev
https://github.com/foxglove
https://foxglove.dev/about
https://foxglove.dev/

