17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

Robotic Sea Bass

Learn assorted topics in robotics, Al, programming, and more.

Continuous Integration with GitHub,
Docker, and Jenkins

In our previous post on Testing Python Code, we created unit tests for a simple Python

project using PyTest. Here we build on this work by discussing how we can take those
tests from running locally on our own machines to something more scalable.

NOTE: While the previous post was specific to Python, you will find that the material in
this post has nothing to do with programming language. Continuous integration is a
general software engineering practice.

The code used in this post is available at https://github.com/sea-bass/python-testing-ci.

Introduction to ClI

If you’re developing in a “bubble” — that is, doing everything on your machine — you
likely kept tweaking your development environment until your tests passed and that was
good enough. Chances are if you handed the code to someone else, whether it’s another
developer on your project or an end user, there will be something a little different in their
environment that may cause things to fail for them. At this point you have two options.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 1/13

https://roboticseabass.com/2020/05/09/testing-python-code/
https://docs.pytest.org/en/latest/
https://github.com/sea-bass/python-testing-ci
https://roboticseabass.com/

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

e Option A: Say ‘it works on my machine” and let others figure it out. This is how
you get your software engineer card revoked.

e Option B: Make sure your (and all contributors’) changes are frequently built and
tested on a clean environment to reduce the chances of this happening.

Continuous Integration (CI) is a software engineering practice to bring together the
contributions of multiple developers on a project and automatically perform necessary
tasks such as building and testing. The idea is for these tasks to run right as these
contributions are made — hence continuous — with the goal of detecting issues as early as
possible.

Source control tools such as Git are already a partial solution to continuous integration.
Hosting your code on a server like GitHub or GitLab is what enables multiple developers
to contribute to the same code repository. However, a Git server by itself doesn’t actually
build and test the code — it just hosts it.

The following video explains the Continuous Integration / Continuous Delivery (CI/CD)
workflow very nicely. If you don’t want to read the rest of this section, just watch this.

Professional Guides: Continuous Integration Continuous Delivery

To recap the video, the basic idea of CI is as follows:

1. Developer pushes changes to a repository hosted on some server

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 2/13

https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://www.youtube.com/watch?v=xSv_m3KhUO8

17/04/2022, 21:13

Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

2. Server registers this change and starts a Cl job. This typically involves building

and testing the project.

3. Developer gets results back from the server. If there is a failure, it needs to be

addressed.

The fact that now rely on a server to build the code in a sterile, isolated environment
means that we can’t get lucky with “works on my machine”. Your project has to

successfully build on the server before the tests are run... and then those tests have to pass.

Only then can your code be considered ready for the world to see.

Let’s take another try at this reproducibility question. What are some easy ways to provide
an entire development environment as needs to be configured for your project? Or what if

your CI server is tasked with testing different projects on different operating systems, or

anything else that could lead to conflicts across environments?

The creation, maintenance, and deployment of such isolated environments motivates the

use of virtualization tools like containers or virtual machines (VMs). To give an extremely

high-level summary of these two approaches:

¢ Virtual Machines perform virtualization at the physical hardware level, which
lets you run completely different operating systems than the host machine.

e Containers perform virtualization at the application level, which uses the host
machine’s operating system kernel under the hood.

Containerized Applications

Host Operating System

Infrastructure

Virtual Machine

Guest
Operating
System

Virtual Machine

Virtual Machine

Guest
Operating
System

Guest
Operating
System

J

Infrastructure

Containers vs. Virtual Machines

[Source: https://www.docker.com/resources/what-container]

The big takeaway is, unlike VMs, with containers you cannot virtualize any and every

operating system configuration from your host machine. However, if you can manage with

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/

3/13

https://www.docker.com/resources/what-container

17/04/2022, 21:13

Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

just containers, they are much faster and memory-efficient than VMs.

For more details, you can refer to the Docker page where the image above came from, or

also this page from IBM.

Running Unit Tests in a Container

For our example, we’ll be using a container since it’s less overhead than a VM and

containers are sufficient since both my development environment and CI “server” will be

using Ubuntu 18.04.

Specifically for this example, and also because it’s by far the most popular

containerization tool, we will be using Docker.

Typically, all the steps needed to assemble a Docker image are written in a Dockerfile.
This is literally a text file with the name “Dockerfile”. The Dockerfile looks as follows.

==
HOWOWONOUIAWNRE

el el el el el
CoONOUTEAWN

20

Define the base image
FROM ubuntu:18.04

Install required packages
RUN apt-get update \
&& apt-get upgrade\
&& apt-get install -y --no-install-recommends \
python3 \
python3-pip \
python3-setuptools

Copy this repo to a folder in the Docker container
COPY . /app

Set the work directory
WORKDIR /app

Install all the required packages
RUN pip3 install -r python requirements.txt \
&& pip3 install

In plain English, the sections in the Dockerfile would roughly translate to:

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/

4/13

https://www.docker.com/resources/what-container
https://www.ibm.com/cloud/learn/containerization
https://www.docker.com/

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

1. Start with a pre-made standard image for Ubuntu 18.04

2. Install additional system requirements (in this example, Python 3)

3. Copy the files from the GitHub repository

4. Set the working folder at startup to the location where we copied our files

5. Install the Python packages needed to run the code, as specified by a
requirements file (we discuss this in a previous post)

Assuming you’ve installed Docker, you can now build this Docker image locally on your
machine to do some preliminary testing. The following command will build the image in
the current folder (assuming that’s where your Dockerfile is) and give it an output name of
testing-ci.

docker build -t testing-ci
We can check that our image was created by typing

docker images

sebastian@type-v2:~/robotic_sea_bass/testing_ci/pyt
REPNSTTORY TAG

Ignore the other images on there... but really, having multiple images for different projects is partially why Docker is
useful!

Then, we can start a container based on this image. Read that again. A container is an
instance of an image. To run the tests using the Docker image as the execution
environment, you can do this in one shot as follows.

docker run testing-ci pytest

Or, you can use the interactive (- 1t) flag to get access to a terminal where you can run
the tests.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 5/13

https://roboticseabass.wordpress.com/2020/05/03/managing-your-python-environment/

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

docker run -it testing-ci
root@CONTAINER ID:/app# pytest

r run -it testing-ci

1/python3

'Platform’': 'Lin . eri 86_6 ith-Ubuntu-18.6
', 'py': '1.8.1° g J13.1'%, s {"html': '2.1.1'

testing

s/testing_ci/p

... our tests still pass inside a Docker container!

This is one step towards setting up continuous integration, since the beauty of
containerization is that we can provide this same Dockerfile to the CI server and have it
automatically build the image, start a container, and run our tests every time we push to
the repository.

Building and Testing on a Cl Server

Next we want to set up a CI server that will do the automated building and testing for us.
There are many CI tools available — some free and open-source, some not. The most
popular ones I’ve personally seen used in the robotics community are Jenkins, TravisCI,
and CircleCI. We will be using Jenkins.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 6/13

https://www.jenkins.io/
https://travis-ci.com/
https://circleci.com/
https://www.jenkins.io/

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

I don’t intend for this to be a full Jenkins tutorial, but below is a screenshot of a Jenkins
pipeline I’ve set up to tie into my GitHub repository.

Jenkins Python-Testing-ClI

General Build Triggers Advanced Project Options Pipeline
Pipeline
Definition Pipeline script from SCM M
SCM Git v @
Repositories @
Repository URL | iitps:/github.com/sea-bass/python-testing-gi | @
Credentials -none- ¥ #=Add ~
Advanced...
Add Repository
Branches to build
Branch Specifier (blank for 'any’) | *fmaster @
Add Branch
Repository browser (Auto) + @

Additional Behaviours Add ¥

Script Path Jenkinsfile ®

Lightweight checkout [« @

Pipeline Syntax

The main thing that brings this all together is the creation of a Jenkinsfile that describes
the steps to be taken when we run a continuous integration job.

Our Jenkinsfile will use the Dockerfile (yes, really) we created in the previous section. The

Jenkinsfile for this example contains 3 major pieces:

1. Telling Jenkins to build a Docker image from the Dockerfile provided in the
GitHub repository.

2. Running the unit tests using PyTest (remember, the Docker image was already
set up to start in the correct working directory).

3. Recording the JUnit-style XML file generated from PyTest so the test results
show up in Jenkins. For more information, see this link.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/

7/13

https://www.jenkins.io/doc/pipeline/tour/tests-and-artifacts/

17/04/2022, 21:13

el el e
URhRWNRERODOONOUIDRWNE

Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

pipeline {
agent { dockerfile true }
stages {
stage('Tests') {
steps {
sh '/bin/bash -c "pytest"'
}
}
}
post {
always {
junit 'latest test results.xml'’
}
}
}

Now, I don’t have a dedicated server, so I used ngrok to establish a tunnel from a specific
port on my localhost (where Jenkins is being served) so that GitHub can send a request to

Jenkins when it registers. I won’t go through the details here, but this blog from
CloudBees has all the information if you want to try this yourself.

NOTE: This is not a very secure approach at all, so feel free to try things out with it and
then promptly shut down ngrok!

(Ctr1+C to quit)

Free)

Web Interface http://1
Forwarding http://: 0 . N .10 -= http://localhost:8080
Forwarding / abcdefg .ngrok.io -> http://localhost:80860

Connections ttl opn rts p50 pooe

6] 0.00 .00 5.01 5.19

/github-
Jaithub-
/github-
/aithub-
/github-

ngrok was set up to create a tunnel from localhost:8080 (where Jenkins is running), where “abcdefg” would on your end

be whatever string ngrok generates at the time.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/

8/13

https://ngrok.com/
https://www.previous.cloudbees.com/blog/jenkins-tutorial-configure-scm-github-triggers-and-git-polling-using-ngrok

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

L] sea-bass / python-testing-ci

Code Issues o Pull requests o Actions Projects o Wiki Security o
Options Webhooks / Manage webhook
Manage access We'll send a posT request to the URL below with details of any subscribe
format you'd like to receive (JSON, x-www-form-urlencoded, efc). More
Branches documentation.
Webhooks
Payload URL *
Notifications .
http://fabcdefg.ngrok.io/github-webhook/
Integrations
Cor
Deploy keys L
ploy K&y application/x-www-form-urlencoded
Secrets
Secret
Actions
Moderation

Which events would you like to trigger this webhook?
Interaction limits

@ Just the push event.

) Send me everything.

O Let me select individual events.

¥ Active
We will deliver event details when this hook is triggered.

Update webhook Delete webhook

Once you have an Internet visible URL for your Jenkins server, you can create a webhook in GitHub that is triggered
when pushing to the repository.

Now that we’ve set up the integration between GitHub and Jenkins, we expect that every
time we push to the GitHub repo, a request will be sent to Jenkins to run a CI job.

On this first push, the build failed because I had an error in my Dockerfile... so the
Docker image could not be created correctly.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 9/13

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

Jenkins + Python-Testing-Cl enable auto refresh

Pipeline Python-Testing-CI

[#add description

Disable Project

Test Result Trend

oy
| —#" Recent Changes 12
H
10
E 8]
3
o 6
o
4
21
0 : !
¥ % W
(just show failures) enlarge
Stage View
Declarative: Declarative: Declarative:
Checkout SCM Agent Setup Post Actions

Average stage times 958ms 22s 394ms

May 12 12 058ms 22s 394ms
C L com mits
failed

The failure was in the “Agent Setup” stage, meaning the build failed.

After fixing the build, I ran the tests but one of them failed, which marks the entire testing
stage as a failure (as it should). You’ll see this below as Run #10.

Finally, I “fixed” this by marking the problematic test as “skipped”, and everything passes
in Jenkins. You’ll see this below as Run #11. Notice in the trends graph that the “red”

(failure) bit was converted to “yellow” (skipped), while all the other passing tests are
denoted by “blue”.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 10/13

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

Jenkins » Python-Testing-Cl enable auto refresh
Pipeline Python-Testing-CI
[#add description
Test Result Trend
bodouonn
= Recent Changes 12
10
t 8
-
C 6
(vl
4
2
0! :
3 o
™ #
(just show failures) enlarge
Stage View
Declarative: Declarative: Tests Declarative:
Checkout SCM Agent Setup Post Actions
Average stage times 603ms 34s 1s 407ms
(Average full run time: ~45s) |°F . 3| I ™
i) 22 603ms 34s 1s 353ms
19:36
Lz 2 603ms 35s 462ms
19:34

Notice now there is a new column showing the tests. This means the build passed and we actually got to the testing
stage.

One last comment: After you run a job, Jenkins gives you access to log data. You will find
this extremely important to figure out why things failed and how you can fix things for
future runs.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/

11/13

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

Declarative: Declarative: e Declarative:
Checkout SCM Agent Setup

Failed with the following error(s)

m script returned exit code 1

603ms 34s

See stage logs for more detal

May 12
J 603ms 34s Ji Logs
19:36

#10
May 12
2 603ms 35s 2s 462ms
19:34
failed

Some light reading abounds!

Summary

So that’s a high-level overview of continuous integration. Obviously as you move from

something like this simple example to a more realistic project involving many people, a
release cycle, and actual end users who don’t want their tools broken, CI becomes much
more useful.

I cannot stress enough how important it is to have a dedicated server if you’re serious
about deploying CI/CD for your work. If you need more motivation, having a server
constantly online will let you embed CI build status badges in your repository READMEs!

build passing

You’ve probably
seen these around.
Now you know what
they are!

This video shows
how to do this for
the Jenkins/GitHub
combo.

Again, all the code is available at https://github.com/sea-bass/python-testing-ci. Note
that to recreate everything you will need to do a lot of the Jenkins and GitHub setup on
your end. Please feel free to reach out if you are trying this, or something similar, and run
into issues. It was a lot of trial-and-error for me to get all the pieces together as well!

2 Sebastian Castro @ May 12,2020 ®a Software Development
@ continuous integration, Docker, GitHub, Jenkins, testing

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 12/13

https://youtu.be/clQEdNdOBm0
https://github.com/sea-bass/python-testing-ci
https://roboticseabass.com/author/sebasacastro/
https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/
https://roboticseabass.com/category/software-development/
https://roboticseabass.com/tag/continuous-integration/
https://roboticseabass.com/tag/docker/
https://roboticseabass.com/tag/github/
https://roboticseabass.com/tag/jenkins/
https://roboticseabass.com/tag/testing/

17/04/2022, 21:13 Continuous Integration with GitHub, Docker, and Jenkins - Robotic Sea Bass

Robotic Sea Bass, proudly powered by WordPress.

https://roboticseabass.com/2020/05/12/continuous-integration-with-github-docker-and-jenkins/ 13/13

https://roboticseabass.com/
https://wordpress.org/

